Find the area of the region for ytanh6x from x0 to 2Solution
Find the area of the region for y=tanh(6x) from x=0 to 2
Solution
tanh(u)du
Rewrite using trigonometric/hyperbolic identities:
=sinh(u)cosh(u)du
Substitute v=cosh(u) dvdu=sinh(u)
=1vdv
This is a standard integral:
=ln(v)
Undo substitution v=cosh(u):
=ln(cosh(u))
hence tanh(u)du = ln(cosh(u))
Now Area = tanh(6x)dx = 1/6 (ln(cosh(6x))) and the limits for x are 0 to 2
Hence Area = 1/6 (ln(cosh(12)))=1.8844754699
