using laplace transform solve IVP y4yut2 y00y01SolutionGiven
using laplace transform solve IVP y\"+4y=u(t-2)
y(0)=0,y\'(0)=1
Solution
Given: y\'\'+4y=u(t-2) , y(0)=0,y\'(0)=1
applying laplce transform on bothsides
s2Y(s) - sy(0) - y\'(0) + 4Y(s) =e-2s /s [ from y(0)=0,y\'(0)=1]
Y(s)(s2+4)-0-1 =e-2s /s
Y(s)(s2+4) =(e-2s /s)+1
Y(s) =[(e-2s /s)+1]/(s2+4)
Y(s) =[(e-2s /s(s2+4))+(1/(s2+4))]
Y(s)=e-2s [(1/4)/(s)+(-1/4(s))/(s2+4))+(1/(s2+4))]
Y(s)=[e-2s (1/4)/(s)]+[e-2s(-1/4(s))/(s2+4))]+[(1/(s2+4))]
apply inverse transform.
y(t)=u(t-2)+(1/2)[u(t-2)cos[2(t-2)]]+(1/2)sin(2t).
