If cos A 12 and sin B 5 squareroot 2626 with angles A and
Solution
cosA=1/2 and sinB = -5sqrt(26)/26 given A, and B are in IV Quadrant
cos(A+B)=cosA.cosB - sinA.sinB
to do this first we don\'t have cosB ,sinA values so we have to find them first
sin^2 A+cos^2 A=1
sin^2 A+(1/2)^2=1
sin^2 A= 1-1/4
sin^2 A=3/4
SinA = -sqrt(3)/2 [ Negative sign ,since A is in IV quadrant]
sin^2 B +cos^2 B=1
[ -5 sqrt(26)/26 ]^2 +cos^2 B=1
25 *26 /26*26 +cos^2 B=1
25/26 +cos^2 B=1
cos^2 B=1-25/26
cos^2 B=1/26
cosB = 1/sqrt(26)
now we got all values so plug in the formula
cos(A+B)=cosA.cosB - sinA.sinB
= 1/2 . 1/sqrt(26) - (-sqrt(3)/2) . -5sqrt(26)/26)
=1/2sqrt(26) - 5sqrt(3)/2sqrt(26)
= (1- 5sqrt(3)/2sqrt(26)
2). cos(A-B) if tanA= 1/2 and sinB =3/5
A, and B are in I quadrant
sec^2 A -tan^2 A=1
sec^2 -(1/2)^2 =1
sec^2 A= 1+1/4
sec^2 A= 5/4
secA = sqrt(5)/2
cosA= 2/sqrt(5)
then SinA = 1/sqrt(5)
sin^2 B +cos^2 B=1
(3/5)^2 +cos^2 B=1
9/25 +cos^2 B=1
cos^2 B =1-9/25
cos^2 B =16/25
cosB = 4/5
cos(A-B) =cosA.cosB +sinA.sinB
= 2/sqrt(5) . 4/5 +1/sqrt(5) .3/5
= 8/5sqrt(5) +3/5sqrt5)
= 11/5sqrt(5)
