Find how many years it will take 15500 to increase to 30000
Solution
Given that A = P [ 1 + (r/n)]nt
Given that A = 30000
P = 15500
r = 6.75 % = 0.0675
n = 4
Then,
A = P [ 1 + (r/n)]nt
Take logarithm on both sides,
log A = log P + log [ 1 + (r/n)]nt
log A = log P + nt log [1+(r/n)]
nt log [1+(r/n)] = log A - log P
t = [log A - log P] / {n. log [1+(r/n)] }
Substitute all the given values,
Then,
t = [log 30000 - log 15500] / {4. log [1+(0.0675/4)] }
= 9.86 yrs
t = 9.86 yrs
Therefore,
required time = 9.86 yrs
