Determine whether each function Is continuous at the given j
Determine whether each function Is continuous at the given jr-value{s). Justify using the continuity test If discontinuous, identity the type of discontinuity as infinite, jump, or removable. f(x) = x^2 - 3x; x = 4. 
Solution
29)f(x)=x/(x+7)
limx->0-f(x)
=limx->0-x/(x+7)
=0/(0+7)
=0
limx->0+f(x)
=limx->0+x/(x+7)
=0/(0+7)
=0
f(0)=0/(0+7)
=0
limx->0-x/(x+7) =limx->0+x/(x+7)=f(0)
function is continous at x =0
limx->7-f(x)
=limx->7-x/(x+7)
=7/(7+7)
=1/2
limx->7+f(x)
=limx->7+x/(x+7)
=7/(7+7)
=1/2
f(7)=7/(7+7)
=1/2
limx->7-x/(x+7) =limx->7+x/(x+7)=f(7)
function is continous at x =7
30)f(x)=x/(x2-4)
limx->2-f(x)
=limx->2- x/(x2-4)
=2/(0-)
=-infinity
limx->2+f(x)
=limx->2+ x/(x2-4)
=2/(0+)
=infinity
f(2) doesnot exist
limx->2-f(x) not equal to limx->2f(x)
so f(x) is discontinous at x =2
limx->4-f(x)
=limx->4- x/(x2-4)
=4/(16-4)
=4/12
=1/3
limx->4+f(x)
=limx->4+ x/(x2-4)
=4/(16-4)
=4/12
=1/3
f(4)=1/3
limx->4-f(x) =limx->4+f(x)=f(4)
function is continous at x =4

