Determine whether each function Is continuous at the given j

Determine whether each function Is continuous at the given jr-value{s). Justify using the continuity test If discontinuous, identity the type of discontinuity as infinite, jump, or removable. f(x) = x^2 - 3x; x = 4.

Solution

29)f(x)=x/(x+7)

limx->0-f(x)

=limx->0-x/(x+7)

=0/(0+7)

=0

limx->0+f(x)

=limx->0+x/(x+7)

=0/(0+7)

=0

f(0)=0/(0+7)

=0

limx->0-x/(x+7) =limx->0+x/(x+7)=f(0)

function is continous at x =0

limx->7-f(x)

=limx->7-x/(x+7)

=7/(7+7)

=1/2

limx->7+f(x)

=limx->7+x/(x+7)

=7/(7+7)

=1/2

f(7)=7/(7+7)

=1/2

limx->7-x/(x+7) =limx->7+x/(x+7)=f(7)

function is continous at x =7

30)f(x)=x/(x2-4)

limx->2-f(x)

=limx->2- x/(x2-4)

=2/(0-)

=-infinity

limx->2+f(x)

=limx->2+ x/(x2-4)

=2/(0+)

=infinity

f(2) doesnot exist

limx->2-f(x) not equal to limx->2f(x)

so f(x) is discontinous at x =2

limx->4-f(x)

=limx->4- x/(x2-4)

=4/(16-4)

=4/12

=1/3

limx->4+f(x)

=limx->4+ x/(x2-4)

=4/(16-4)

=4/12

=1/3

f(4)=1/3

limx->4-f(x) =limx->4+f(x)=f(4)

function is continous at x =4

 Determine whether each function Is continuous at the given jr-value{s). Justify using the continuity test If discontinuous, identity the type of discontinuity
 Determine whether each function Is continuous at the given jr-value{s). Justify using the continuity test If discontinuous, identity the type of discontinuity

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site