Suppose that p epsilon Z If 3 divides p2 then 3 divides p Pr
Suppose that p epsilon Z. If 3 divides p^2, then 3 divides p. Prove that squareroot 3 is not rational.
Solution
1)
Contrapositive of above statement is
IF 3 does not divide p then 3 does not divide p^2
Let,3 not divide p
Let, p=3k+r, k is some integer and r=1 or 2
p^2=9k^2+r^2+6k=3(3k^2+2k)+r^2
r^2=1 or 4
HEnce, p^2 is not a multiple of 3
HEnce, 3 does not divide p^2
2.
Let, sqrt{3} be rational
So, sqrt{3}=p/q, p,q integers, gcd(p,q)=1
3q^2=p^2
Hence, 3|p^2
From Problem 1) 3|p
So, p=3k for some integer k
3q^2=3^2k^2
q^2=3k^2
Hence 3|q
But, gcd(p,q)=1
and we have,3|q,3|p
Hence a contradictin
Hence, sqrt{3} is irrational
