Use GaussJordan elimination method to find all solutions of
Solution
Given that
2x + 3y = 12
2x - 3y = 0
5x - y = 13
The augmented matrix for above system of linear equations is ,
[ 2 3 12
2 -3 0
5 -1 13 ]
Applying gauss-jordan elimination ,
Swap matrix rows , R1 <-> R3
[ 5 -1 13
2 3 0
2 -3 12 ]
R3 <- R2 - ( (2/5).R1 )
[ 5 -1 13
0 (-13/5) (-26/5)
2 3 12 ]
R3 <- R3 - ( (2/5).R1 )
[ 5 -1 13
0 (-13/5) (-26/5)
0 (17/5) (34/5) ]
Swap matrix rows , R2 <-> R3
[ 5 -1 13
0 (17/5) (34/5)
0 (-13/5) (-26/5) ]
R3 <- R3 + ( (13/17).R2 )
[ 5 -1 13
0 (17/5) (34/5)
0 0 0 ]
Hence,
The followung is the system of equations equivalent to the given system of equations ,
i.e
5x - y = 13 ...................................1
(17/5) y = ( 34/5 )..............................2
17y = 34
y = 34/17
y = 2
Substitute y = 2 in equation 1
5x - y = 13
5x = 13 + y
5x = 13 + 2
5x = 15
x = 15/5
x = 3
Therefore,
The solution is : x = 3 , y = 2

