find all values of a such that the system Axb has a unique s
find all values of \"a\" such that the system Ax=b has a unique solution for any b in element R^3 ( must use determinant).
Solution
given A=
3a.....0.......0
a.......4......2a
1.......2a......1
Ax=b has a unique solution for any b when determinant of A0
detA=3a[(4*1)-(2a*2a)]+0[(1*2a)-(a*1)]+0[(a*2a)-(1*4)]0
3a[4-4a2]+0+00
12a[1-a2]0
a0,a-1,a1
so system has unique solution when a belong to (-,-1)U(-1,0)U(0,1)U(1,)
