Find the 2 3th entry of the inverse of the matrix 1 2 3 1 3
Find the (2, 3)-th entry of the inverse of the matrix [1 2 3 1 3 2 2 1 4] 3/5 2/5 -3/5 1/5 -1/5
Solution
A=(4 1 5)230112701
\\displaystyle={\\left(-{8}+{\\left(-{3}\ ight)}+{0}\\ \\ \\ {4}+{1}+{10}\\ \\ \\ {28}+{0}+{\\left(-{5}\ ight)}\ ight)}=(8+(3)+0 4+1+10 28+0+(5))
\\displaystyle={\\left(-{11}\\ \\ {15}\\ \\ {23}\ ight)}=(11 15 23)
AB is not possible. (3 × 3) × (1 × 3).
![Find the (2, 3)-th entry of the inverse of the matrix [1 2 3 1 3 2 2 1 4] 3/5 2/5 -3/5 1/5 -1/5Solution A=(4 1 5)230112701 \\displaystyle={\\left(-{8}+{\\left( Find the (2, 3)-th entry of the inverse of the matrix [1 2 3 1 3 2 2 1 4] 3/5 2/5 -3/5 1/5 -1/5Solution A=(4 1 5)230112701 \\displaystyle={\\left(-{8}+{\\left(](/WebImages/2/find-the-2-3th-entry-of-the-inverse-of-the-matrix-1-2-3-1-3-964901-1761498783-0.webp)