Starting from Eulers formula derive the formula of de moivre
Starting from Euler\'s formula, derive the formula of de moivre: (cos theta + i sin theta)^n = (cos n theta + i sin n theta) and, n squareroot (cos theta + i sin theta) = (cos + i sin )
Solution
(3) De Movires formula deriver from Euler\'s formula
e^{ix} = cos x + i sinx
the exponential law for integer powers
[e^{ix}]n = e^{inx}
Then, by Euler\'s formula,
e^i(nx) = cos (nx) + i sin(nx)
Arrange the values
(cosx + i sinx)^2 = cos^2 x + 2isin xcos x-sin^2 x = (cos^2 x - sin^2 x) + i(2 sinx cosx)
= cos(2x) + i sin (2x)
final equality follows
cos^2 x - sin^2 x = cos(2x)
2sinx cosx = sin(2x) .
Proved
(4) a cos 2theta = cos^2 theta - sin^2 theta
put theta = ix
we get cos(2ix) = cos^2 (ix) - sin^2(ix)
cosh 2x = (cosh x)^2 - (i sinh x)^2
cosh 2x = cosh^2 x + sinh^2 x
(b) sin 2x = 2sinx cosx
we have to proof
so the same rule put theta = ix
we get sin(2ix) = 2 sin(ix) cos(ix)
or we can say that isinh 2x = 2 .sinh x .cosh x
hence sin 2x = 2sinx cosx
Proved
