The random variable pair X Y has the joint distribution Find
Solution
7. the marginal distribution is obtained as
P[X=1]=1/12+1/6+0=1/4 P[Y=2]=1/12+1/6+1/12=1/3
P[X=2]=1/6+0+1/3=1/2 P[Y=3]=1/6+0+1/6=1/3
P[X=3]=1/12+1/6+0=1/4 P[Y=4]=0+1/3+0=1/3
a) we need to find the conditional probability of P[X|Y=2]
now P[X=1|Y=2]=P[X=1,Y=2]/P[Y=2]=(1/12)/(1/3)=1/4
P[X=2|Y=2]=P[X=2,Y=2]/P[Y=2]=(1/6)/(1/3)=1/2
P[X=3|Y=2]=P[X=3,Y=2]/P[Y=2]=(1/12)/(1/3)=1/4 [answer]
b) cov(X,Y)=E[XY]-E[X]E[Y]
now E[XY]=1*2*1/12+1*3*1/6+1*4*0+2*2*1/6+2*3*0+2*4*1/3+3*2*1/12+3*3*1/6+3*4*0=6
E[X]=1*1/4+2*1/2+3*1/4=2 E[Y]=2*1/3+3*1/3+4*1/3=3
hence cov(X,Y)=6-2*3=0 [answer]
c) No, X and Y are not independent.
because if X and Y are to be independent then P[X=i,Y=j]=P[X=i]*P[Y=j] for all i and j
but here P[X=2,Y=3]=0 but P[X=2]*P[Y=3]=1/2*1/3=1/6 but not zero.
hence P[X=2,Y=3] is not equal to P[X=2]*P[Y=3]
hence they are not independent [answer]
