y ysinxsinx ypi22Solution y ysinx sinx this is linear diff
y\'+ (y)(sinx)=sin(x) ;y(pi/2)=2
Solution
y\' + ysinx = sinx this is linear differential equation integrating factor = e^[integral sinx dx] = e^ (-cosx) so we have y.e^(-cosx) = integral(sin x e^(-cosx) dx) solving y.e^(-cosx) = e^(-cosx) + c give y(pi/2) = 2 2.1 = 1 + c c = 1 so we have e^(-cosx)(y-1) = 1![y\'+ (y)(sinx)=sin(x) ;y(pi/2)=2Solution y\' + ysinx = sinx this is linear differential equation integrating factor = e^[integral sinx dx] = e^ (-cosx) so we ha y\'+ (y)(sinx)=sin(x) ;y(pi/2)=2Solution y\' + ysinx = sinx this is linear differential equation integrating factor = e^[integral sinx dx] = e^ (-cosx) so we ha](/WebImages/2/y-ysinxsinx-ypi22solution-y-ysinx-sinx-this-is-linear-diff-965034-1761498807-0.webp)