Now assume that the population standard deviation of the ex
Now assume that the population standard deviation, , of the existing machine diameter measurements is not known (but still normally distributed). Using sample mean 5.00 mm, sample standard deviation 0.028 mm and sample size
100, compute the following and include units in your answers:
a) A 95% twosided confidence interval for the true standard deviation of bolt diameter, .
b) A 90% lower confidence bound for the true standard deviation of bolt diameter, .
Solution
a)
As              
               
 df = n - 1 =    99          
 alpha = (1 - confidence level)/2 =    0.025          
               
 Then the critical values for chi^2 are              
               
 chi^2(alpha/2) =    128.4219886          
 chi^2(alpha/2) =    73.36108019          
               
 Thus, as              
               
 lower bound = (n - 1) s^2 / chi^2(alpha/2) =    0.000604382          
 upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    0.001058          
               
 Thus, the confidence interval for the variance is              
               
 (   0.000604382   ,   0.001058   )
               
 Also, for the standard deviation, getting the square root of the bounds,              
               
 (   0.024584192   ,   0.032526907   ) [answer]
**************************
b)
As              
               
 df = n - 1 =    99          
 alpha = (1 - confidence level) =    0.1          
               
 Then the critical values for chi^2 are              
               
 chi^2(alpha) =    117.4068832          
              
 Thus,              
               
 lower bound variance= (n - 1) s^2 / chi^2(alpha) =    0.000661086
Therefore,
lower bound standard deviation = sqrt(0.000661086)
lower bound standard deviation = 0.025711593 [ANSWER]

