Use Eulers method to obtain a four decimal approximation of
Use Euler\'s method to obtain a four- decimal approximation of the indicated value. Carry out the recursion of (3) in section 2.6 y_n + 1 = y_n + hf(x_n, y_n) by hand, first using h = 0.1 and then using h = 0.05. y\' = 2x - 3y + 1, y(1) = 8; y(1, 2)
Solution
f(x,y)=2x-3y+1
Using h=0.1
y(1.1)=y(1)+0.1f(1,8)=5.9
y(1.2)=y(1.1)+0.1f(1.1,5.9)=4.45
h=0.05
y(1.05)=y(1)+0.05f(1,8)=6.95
y(1.1)=y(1.05)+0.05f(1.05,6.95)=6.0625
y(1.15)=y(1.1)+0.05f(1.1,6.0625)=5.313125
y(1.2)=y(1.15)+0.05f(1.15,5.313125)=4.6811
