Rewrite the equation in terms of base e Express the answer i
Rewrite the equation in terms of base e. Express the answer in terms of a natural logarithm, and then round to three decimal places.
Solution
y = 9(4)^x
Taking natural log of both sides:
ln(y) = ln(9(4)^x)
Log property : ln(A*B) = lnA + lnB
ln(y) = ln9 + ln(4^x)
= ln9 + x*(ln4)
= 2.197 + 1.38x
lny =2.197 + 1.38x
Use the exponent property: lnA = B ----> A = e^B
So, y = e^(2.197 + 1.386x)
= e^(2.197)e^(1.386x)
Exponent Form : y=9e^(1.386x)
ln(y) = ln9 + ln(4^x)
y = e^(ln9 +ln(4^x)
= e^(ln9)e^(xln4)
Natural Logarithm y = 9e^(xln4)
Option B)
