A normal distribution of scores in populationhas a mean of 1
A normal distribution of scores in populationhas a mean of 100 with a standard deviatiion of 20.
What is the probability of randomly selecting a score greater than X= 110 rom this population?
*If a sample of n=25 scroes is randomly selected from this population, what is the probability thaqt the sample mean will be greater than M= 110?
*I only need help with this question.
Solution
1. What is the probability of randomly selecting a score greater than X= 110 rom this population?
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    110      
 u = mean =    100      
           
 s = standard deviation =    20      
           
 Thus,          
           
 z = (x - u) / s =    0.5      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.5   ) =    0.308537539 [ANSWER]
***************
2. If a sample of n=25 scroes is randomly selected from this population, what is the probability thaqt the sample mean will be greater than M= 110?
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    110      
 u = mean =    100      
 n = sample size =    25      
 s = standard deviation =    20      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    2.5      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   2.5   ) =    0.006209665 [answer]
****************

