Write the first three nonzero terms of the Taylor Series for
Write the first three nonzero terms of the Taylor Series for the following function centered at a = - pi f(x) = x^2cos(5x) Using your solution from part (a), find the first three nonzero terms in Taylor Polynomial form of the following: x^2 cos(5x) dx
Solution
a)given f(x)=x2cos(5x)
f(-)=(-)2cos(-5) =-2
f \'(x)=2xcos(5x) -5x2sin(5x)
f \'(-)=2(-)cos(-5) -5(-)2sin(-5) =2
f \'\'(x)=2cos(5x) -10xsin(5x) -10xsin(5x)-25x2cos(5x)
f \'\'(-)=2cos(-5) +10sin(-5) +10sin(-5)-25(-)2cos(-5)=-2+0+0+252=252-2
f(x)=f(-) +(f \'(-))(x-(-))/1! +(f \'\'(-))(x-(-))2/2!
f(x)=-2 +(2)(x-(-))/1! +(252-2)(x-(-))2/2!
=================================
b)x2cos(5x) dx
=[-2 +(2)(x-(-))/1! +(252-2)(x-(-))2/2! ]dx
=[-2x +(2)(x-(-))2/2! +(252-2)(x-(-))3/3! ] +C
