Give that alpha lies in quadrant II and sin alpha 45 beta l
Give that alpha lies in quadrant II and sin alpha = 4/5, beta lies in quadrant III and tan beta = 5/12, find the exact value of sin (alpha + beta) tan (alpha - beta) cos 2 alpha
Solution
sin alpha=4/5 alpha is in second quadrant
opposite=4 hypotenuse=5
adjacent=sqrt(hypotenuse2-adjacent2) = 3
cos alpha= adjacent/hypotenuse-3/5
tan alpha= -4/3
tan beta=5/12
opposite=5
adjacent=12
hypotenuse=sqrt(opposite2+ adjacent2) = 13
sin beta= -5/13,cos beta=-12/13
a. sin(alpha + beta)=sin alpha cos beta + cos alpha sin beta = (4/5)(-12/13)+(-3/5)(-5/13) = -33/ 65
b. tan(alpha-beta)= (tan alpha-tan beta)/(1 +tan alpha tan beta)= ((-4/3)-(5/12))/(1+(-4/3)(5/12))=-63/16
c. cos 2 alpha= 2cos2alpha -1=2(-3/5)2-1= -7/25
