ERBoard Learn Dhttpswebcoursesniuedu x x cswebdavl pid383161
Solution
(6)(a) Given X follows Binomial distribution with n=1000 and p=0.02
P(X=x)=1000Cx*(0.02^x)*(0.98^(1000-x)) for x=0,1,2,...,1000
So the probability is
P(X>25) = P(X=26)+P(X=27)+...+P(X=1000)
=1000C26*(0.02^26)*(0.98^(1000-26))+...+1000C1000*(0.02^1000)*(0.98^(1000-1000))
=0.1099331
--------------------------------------------------------------------------------------------------------------------------
(b) P(20<=X<=30) = P(X=20)+P(X=21)+...+P(X=30)=0.5179937
--------------------------------------------------------------------------------------------------------------------------
(7)(a)P(X<5000) = P((X-mean)/s <(5000-7000)/600)
=P(Z<-3.33) =0.0004 (from standard normal table)
--------------------------------------------------------------------------------------------------------------------------
(b) P(X<c)=0.05
--> P(Z<(c-7000)/600) =0.05
--> (c-7000)/600 =-1.64 (from standard normal table)
So c= 7000-1.64*600=6016
--------------------------------------------------------------------------------------------------------------------------
(c) The probability that are operating after 7000 hours is
P(X>7000) = P(Z>(7000-7000)/600) = P(Z>0)=0.5 (from standard normal table)
So all three is
0.5^3=0.125

