A variable x is normally distributed with a mean of 500 and
A variable x is normally distributed with a mean of 500 and a standard deviation of 20. Find
a. the 70th percentile.
b. the 30th percentile.
c. the x value which exceeds 90% of all x values.
Solution
a. the 70th percentile.
P(X<x)=0.7
--> P((X-mean)/s <(x-500)/20) = 0.7
--> P(Z<(x-500)/20) =0.7
--> (x-500)/20= 0.52 (from standard normal table)
So x= 500+0.52*20 =510.4
----------------------------------------------------------------------------------------------
b. the 30th percentile.
P(X<x)=0.3
--> P(Z<(x-500)/20) = 0.3
--> (x-500)/20 = -0.52 (from standard normal table)
So x= 500+0.52*20=510.4
----------------------------------------------------------------------------------------------
c. the x value which exceeds 90% of all x values.
P(X<x) =0.9
--> P(Z<(x-500)/20) = 0.9
--> (x-500)/20= 1.28(from standard normal table)
So x= 500 +1.28*20 =525.6
