sin u 513 pi2 u Find the exact values of sinu2 cosu2 and
sin u = 5/13 , pi/2 < u < Find the exact values of sin(u/2), cos(u/2), and tan(u/2) using the half-angle formulas.
Solution
/2 < u <
/4 < u/2 < /2
sin u = 5/13
cos u =-[132-52] /13 =-12/13
sin(u/2)=[(1-cosu)/2]
sin(u/2)=[(1+(12/13))/2]
sin(u/2)=(25/26)
cos(u/2)=[(1+cosu)/2]
cos(u/2)=[(1-(12/13))/2]
cos(u/2)=(1/26)
tan(u/2)=sin(u/2)/cos(u/2)
tan(u/2)=(25/26)/(1/26)
tan(u/2)=(25)
tan(u/2)=5
