Find where is the unit vector in the direction of X1X Solut
     Find  , where  is the unit vector in the direction of X_1-X.   
  
  Solution
first of all we will find Grad f partial derivative and then multiply by direction vector
 (i) Grad f = (pi*y*z cos(pixyz)i + pi*x*z cos(pixyz)j + pi*y*x cos(pixyz)k )* (2i + 1j +2k)
    = pi(2y*z cos(pixyz) + x*z cos(pixyz) + 2y*x cos(pixyz) )
 (ii) Grad f = [-2x*e^-(x^2+y^2+2z)i +-2y*e^-(x^2+y^2+2z)j +-2*e^-(x^2+y^2+2z)k] * [ i-2k]
    =(-2x+4)*e^-(x^2+y^2+2z)
 (iii) Grad f = [(1/(+x+y+z))i +(1/(+x+y+z))j + (1/(+x+y+z))k ]*(2i-2k)
    = 0
 (iv) Grad f = 4x^3(i+j+k+l....)*(i+j+k+l...)
    4x^3*n

