If X is Nmu 5 sigma2 4 find each C so that PX SolutionNorm
     If X is N(mu = 5, sigma^2 = 4), find each C so that P(X  
  
  Solution
Normal Distribution
 Mean ( u ) =5
 Standard Deviation ( sd )= 2
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 P ( Z < x ) = 0.8749
 Value of z to the cumulative probability of 0.8749 from normal table is 1.15
 P( x-u/s.d < x - 5/2 ) = 0.8749
 That is, ( x - 5/2 ) = 1.15
 --> x = 1.15 * 2 + 5 = 7.3  

