Is it possible to factor the polynomial Factor the polynomia
Is it possible to factor the polynomial?
Factor the polynomial. 64a^3 - 27b^6Solution
given
64a^3 - 27b^6
Step 1 :
Equation at the end of step 1 :
Step 2 :
Equation at the end of step 2 :
Step 3 :
Trying to factor as a Difference of Squares :
3.1      Factoring:  64a3-27b6
 
 Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)
 
 Proof :  (A+B) • (A-B) =
          A2 - AB + BA - B2 =
          A2 - AB + AB - B2 =
          A2 - B2
 
 Note :  AB = BA is the commutative property of multiplication.
 
 Note :  - AB + AB equals zero and is therefore eliminated from the expression.
 
 Check :  64  is the square of  8
 Check : 27 is not a square !!
 
 Ruling : Binomial can not be factored as the difference of two perfect squares.
Trying to factor as a Difference of Cubes:
3.2      Factoring:  64a3-27b6
 
 Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
               (a-b) • (a2 +ab +b2)
 
 Proof :  (a-b)•(a2+ab+b2) =
             a3+a2b+ab2-ba2-b2a-b3 =
             a3+(a2b-ba2)+(ab2-b2a)-b3 =
             a3+0+0+b3 =
             a3+b3
 
 Check :  64  is the cube of  4
 
 Check :  27  is the cube of   3
 Check : a3 is the cube of   a1
 
 Check : b6 is the cube of   b2
 
 Factorization is :
              (4a - 3b2)  •  (16a2 + 12ab2 + 9b4)
Trying to factor as a Difference of Squares :
3.3      Factoring:  4a - 3b2
 
 Check :  4  is the square of  2
 Check : 3 is not a square !!
Factoring 16a2 + 12ab2 + 9b4 not possible
final result:

