Given a normal population with a standard deviation 162 A ra
Given a normal population with a standard deviation 1.62. A random sample of 60 observations was taken, and its mean was calculated to be 5.41
Calculate a 99%confidence interval for : show work
if we had wanted 99% confidence interval that had a maximum error of 0.50, what should our sample size have been?
Solution
a)
Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    5.41          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    1.62          
 n = sample size =    60          
               
 Thus,              
 Margin of Error E =    0.538711776          
 Lower bound =    4.871288224          
 Upper bound =    5.948711776          
               
 Thus, the confidence interval is              
               
 (   4.871288224   ,   5.948711776   ) [ANSWER]
 b)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.005  
       
 Using a table/technology,      
       
 z(alpha/2) =    2.575829304  
       
 Also,      
       
 s = sample standard deviation =    1.62  
 E = margin of error =    0.5  
       
 Thus,      
       
 n =    69.65049056  
       
 Rounding up,      
       
 n =    70   [ANSWER]

