For the FIR filtec wa impulse response of nn 2 deltan 2delt
For the FIR filtec w/a impulse response of n[n] = 2 delta[n] -2delta[n-1] + delta[n-2] the system function is H(z) = 2 -2 z^-1 + z^-2 Show mathematically how 2- 2z^-1 + z^-2 = 2Z^2 - z + 1/2/z^2 = 2[z-1/2(1+j)][z-1/2(1-j)]/z^2
Solution
The system function is H(z)= 2 - 2z-1 + z-2 = 2 - 2/z + 1/z2
= (2z2 - 2z + 1) / z2
= 2(z2 - z + 1/2) / z2
if we consider the numerator ie. z2 - z + 1/2 , the roots of the equation is [-b + (b2 - 4ac)1/2] / 2a
z = [1 + (1- 2)1/2] / 2
= [1 + (-1)1/2] / 2
= [1 + j ] /2 , since j = (-1)1/2
= (1 + j)/2 and (1-j)/2
the roots of the equation z2 - z + 1/2 is [ z- (1 + j)/2 ] [ z- (1 - j)/2]
thus the transfer function H(Z) = 2(z2 - z + 1/2) / z2 = 2[ [ z- (1 + j)/2 ] [ z- (1 - j)/2]] / z2
= 2[ [ z- 1/2(1 + j) ] [ z- 1/2(1 - j)] / z2
![For the FIR filtec w/a impulse response of n[n] = 2 delta[n] -2delta[n-1] + delta[n-2] the system function is H(z) = 2 -2 z^-1 + z^-2 Show mathematically how 2 For the FIR filtec w/a impulse response of n[n] = 2 delta[n] -2delta[n-1] + delta[n-2] the system function is H(z) = 2 -2 z^-1 + z^-2 Show mathematically how 2](/WebImages/3/for-the-fir-filtec-wa-impulse-response-of-nn-2-deltan-2delt-968702-1761499252-0.webp)