Of 1000 randomly selected cases of lung cancer 844 resulted
Of 1000 randomly selected cases of lung cancer, 844 resulted in death within 10 years. Construct a 95% two-sided confidence interval on the death rate from lung cancer. Use a z-score rounded to 2 decimal places.
Round your answers to 3 decimal places.
Solution
Given a=1-0.95=0.05, Z(0.025) = 1.96 (from standard normal table)
p=844/1000 = 0.844
So the lower bound is
p - Z*sqrt(p*(1-p)/n) = 0.844- 1.96*sqrt(0.844*(1-0.844)/1000) =0.82
So the upper bound is
p + Z*sqrt(p*(1-p)/n) = 0.844+ 1.96*sqrt(0.844*(1-0.844)/1000) =0.87
-----------------------------------------------------------------------------------------------------------
(a)
n=(Z/E)^2*p*(1-p)
=(1.96/0.03)^2*0.844*(1-0.844)
=562.0005
Take n=563
-----------------------------------------------------------------------------------------------------------
(b) We use p=0.5 as estimated.
n=(Z/E)^2*p*(1-p)
=(1.96/0.03)^2*0.5*(1-0.5)
=1067.111
Take n=1068
