Find tancos123 sinsec1xSolutiontancos123 sinsec1x Let y cos1
Find tan(cos^-1(2/3)) sin(sec^-1(x))
Solution
tan(cos^-1(2/3))* sin(sec^-1(x))
Let y =cos^-1(2/3)
cos y = 2/3 ; tany = sqrt(5)/2
tan(cos^-1(2/3)) = tan(tan^-1(sqrt5/2)) = sqrt(5)/2
sin(sec^-1(x))
Let z = sec^-1(x) ; secz = x
cosz = 1/x ; sinz = sqrt(1-x^2)/x
z = sin^-1(sqrt(1-x^2)/x)
So , sin(sec^-1(x)) = sinsin^-1(sqrt(1-x^2)/x)
= sqrt(1-x^2)/x
Finally , tan(cos^-1(2/3))* sin(sec^-1(x))
= sqrt(5)/2*sqrt(1-x^2)/x
= sqrt(5 -5x^2)/2x
