The fourth degree polynomial fx 230x4 18x3 9x2 221x 9 h

The fourth degree polynomial:

f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9

has two real zeroes one in [-1,0] and the other in [0,1] Attempt to aproximate these values to 10^ -6 using the secant method.

Please to not use maple.

Solution

>> false

f(x)=230*x^4+18*x^3+9*x^2-221*x-9

error tolerance =1e-5, new tolerance=1e-6

First guess=-1             Second guess=0

i = 17, x = -0.0406585, fx = -0.000174985

>> false

f(x)=230*x^4+18*x^3+9*x^2-221*x-9

error tolerance =1e-5, new tolerance=1e-6

First guess=0,             Second guess=1

i = 9, x = 0.962398, fx = -2.29991e-005

>> secant

f(x)=230*x^4+18*x^3+9*x^2-221*x-9

error tolerance =1e-5, new tolerance=1e-6

First guess=-1,            Second guess=0

i = 5, x = -0.0406593, fx = -7.47846e-012

>> secant

f(x)=230*x^4+18*x^3+9*x^2-221*x-9

error tolerance =1e-5, new tolerance=1e-6

First guess=0,             Second guess=1

i = 12, x = -0.0406593, fx = -4.15135e-011

Converge to the wrong root

The fourth degree polynomial: f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9 has two real zeroes one in [-1,0] and the other in [0,1] Attempt to aproximate these value

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site