Show that Re z z z2 and that Im z z z2iSolutionLet z x
Solution
Let, z = x + iy
where x and y are real but z is a complex number.
And Re (z) = x and Im (z) = y
So, z* = x - iy
Now (z + z* ) / 2 = (x + iy + x - iy) / 2 = x = Re (z)
Also (z - z* ) / 2 = [(x + iy) - (x - iy)] / 2i = Im (z)

