Write the complex number 9 12i in trigonometric form rcos t
     Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]![Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]SolutionSolution: trigonom  Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]SolutionSolution: trigonom](/WebImages/3/write-the-complex-number-9-12i-in-trigonometric-form-rcos-t-969612-1761499373-0.webp) 
  
  Solution
Solution:
trigonometric form is as follows:
 
 r(cos() + isin())
r = sqrt(real^2 + imaginary^2)
 r = sqrt((-9)^2 + (12)^2)
 r = sqrt(81 + 144)
 r = sqrt(225)
 r = 15
 
  = tan^-1(imaginary/real)
  = tan^-1(12/(-9))
  = tan^-1(-4/3)
  = 306.87 degree
so trig form:
 
 15(cos(306.87) + isin(306.87))
![Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]SolutionSolution: trigonom  Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]SolutionSolution: trigonom](/WebImages/3/write-the-complex-number-9-12i-in-trigonometric-form-rcos-t-969612-1761499373-0.webp)
