Write the complex number 9 12i in trigonometric form rcos t
Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]
Solution
Solution:
trigonometric form is as follows:
r(cos() + isin())
r = sqrt(real^2 + imaginary^2)
r = sqrt((-9)^2 + (12)^2)
r = sqrt(81 + 144)
r = sqrt(225)
r = 15
= tan^-1(imaginary/real)
= tan^-1(12/(-9))
= tan^-1(-4/3)
= 306.87 degree
so trig form:
15(cos(306.87) + isin(306.87))
![Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]SolutionSolution: trigonom Write the complex number -9 + 12i in trigonometric form r(cos theta + i sin theta), with theta in the interval [0 degree, 360 degree]SolutionSolution: trigonom](/WebImages/3/write-the-complex-number-9-12i-in-trigonometric-form-rcos-t-969612-1761499373-0.webp)