The average expenditure on Valentines Day was expected to be
The average expenditure on Valentine\'s Day was expected to be $100.89 (USA Today, February 13, 2006). Do male and female consumers differ in the amounts they spend? The average expenditure in a sample survey of 46 male consumers was $135.67, and the average expenditure in a sample survey of 39 female consumers was $68.64. Based on past surveys, the standard deviation for male consumers is assumed to be $38, and the standard deviation for female consumers is assumed to be $21.
What is the point estimate of the difference between the population mean expenditure for males and the population mean expenditure for females (to 2 decimals)?
 
At 99% confidence, what is the margin of error (to 2 decimals)?
 
Develop a 99% confidence interval for the difference between the two population means (to 2 decimals).
 ( , )
Solution
  
 Calculating the means of each group,              
               
 X1 =    135.67          
 X2 =    68.64          
 Thus,
Point estimate of difference = X1 - X2 = 67.03 [ANSWER]
******************************
       
 Calculating the standard deviations of each group,              
               
 s1 =    38          
 s2 =    21          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    46          
 n2 = sample size of group 2 =    39          
 Thus, df = n1 + n2 - 2 =    83          
 Also, sD =    6.534446928          
               
 For the   0.99   confidence level, then      
               
 alpha/2 = (1 - confidence level)/2 =    0.005          
 t(alpha/2) =    2.636368757
Thus,
Margin of error = t(alpha/2) * sD = 17.22721172 [ANSWER]
*********************
       
 Now,
               
 lower bound = [X1 - X2] - t(alpha/2) * sD =    49.80278828          
 upper bound = [X1 - X2] + t(alpha/2) * sD =    84.25721172          
               
 Thus, the confidence interval is              
               
 (   49.80278828   ,   84.25721172   ) [ANSWER]
*****************************

