If sin theta 45 and theta is in QII find cos theta tan the
If sin theta = 4/5 and theta is in QII, find cos theta & tan theta. Verify the identity: 1 - sin^2 x/cos x = cos x Verify the identity: cos^2x tan^2x + cos^2x = 1 Solve (sin x + 1)(tan x - 1) = 0 in the interval [0, 2 pi) Solve 4cos^2 x = 1 in the interval [0, 2 pi). Find the exact value of sin(60 degree + 45 degree). Find the exact value of cos(285 degree) Given sin theta = -3/5, theta in Q4. Find sin theta cos theta Solve right triangle ABC if a = 5 and c = 10
Solution
1. sin theta=4/5
theta is in second quadrant
here opposite=4 and hypotenuse=5
Adjacent=sqrt(25-16) =3
Cos theta=adjacent/hypotenuse
cos theta=-3/5
tan theta=sin theta/cos theta=-4/3
2. (1-sin2x)/cosx=cos x
Starting with the left side
(1-sin2x)/cosx
cos2x/cosx=cosx
3. tan2x cos2x +cos2x=1
Starting with the left side
cos2x(tan2x +1)
cos2x*sec2x
cos2x(1/cos2x)=1
