Prove the following i IxyI IxIIyISolutioni Case 1xy0 xyxy C
Prove the following:
(i) IxyI = IxI*IyI.
Solution
i)
Case 1:xy>=0
 |xy|=xy
Case 1.1 x>=0,y>=0
x=|x|,y=|y|,|xy|=|x||y|
Case 1.2 x<0,y<0
x=-|x|,y=-|y|
xy=|x||y|
Hence, |xy|=|x||y|
Case 2:xy<0
|xy|=-xy
Case 2.1 x>0,y<0
x=|x|, y=-|y|
xy=-|x||y| ,-xy=|x||y|
Case 2.2 x<0,y>0
x=-|x|,y=|y|
xy=-|x||y| , -xy=|x||y|
Hence, |xy|=|x||y|
Hence proved
ii)
Case 1.x-y>=0
|x-y|=x-y =x+(-y)<=|x|+|y|
Case 2. x-y<0
|x-y|=-(x-y)=-x+y<=|x|+|y|
Hence proved
iii)
Case 1.x-y>=0
|x-y|=x-y =x-y>=|x|-|y|
Case 2. x-y<0
|x-y|=-(x-y)=-x+y>=|x|-|y|
Hence proved
iv)
Using iii)
||x|-|y||<=||x-y||=|x-y|
Hence proved


