How do I find the partial fraction decomposition of 2x 7x
How do I find the partial fraction decomposition of (2x² + 7x + 9)/(x² + 2x +1) using long division?
How do I find the partial fraction decomposition of (2x² + 7x + 9)/(x² + 2x +1) using long division?
Solution
x2 + 2x +1 ) 2x2 + 7x + 9 ( 2
.................. 2x2 + 4x + 2
---------------
.................. .........3x + 7
2x2 + 7x + 9 = 2(x2 + 2x +1) + (3x +7)
==> (2x2 + 7x + 9)/(x2 + 2x +1) = [ 2(x2 + 2x +1) + (3x +7)]/(x2 + 2x +1)
==> 2(x2 + 2x +1)/(x2 + 2x +1) + (3x +7)/(x2 + 2x +1)
==> 2 + (3x +7)/(x2 + 2x +1)
consider (3x +7)/(x2 + 2x +1) = (3x +7)/(x +1)2
let (3x +7)/(x +1)2 = A/(x +1) + B/(x +1)2
==> 3x +7 = A(x +1) + B
==> 3x +7 = Ax + A + B
Comparing coefficients of like terms
==> A = 3 , A +B = 7
==> B = 7 - A = 7 - 3 = 4
==> (3x +7)/(x +1)2 = 3/(x +1) + 4/(x +1)2
==> 2x2 + 7x + 9)/(x2 + 2x +1) = 2 + 3/(x +1) + 4/(x +1)2
