If F SSR1SSEn 2 show that a Fni2R21 R2 and b R2 FF n 2S
If F = SSR/1/SSE/(n - 2), show that (a) F=(ni-2)R^2/1 - R^2 and (b) R^2 = F/F + n- 2.
Solution
Formulas:
SST = SSR + SSE
R2 = Coefficient of Determination = SSR/SST or 1 – SSE/SST
a)
F = SSR(n-2)/SSE {Given}
= (SSR(n-2) / SST ) / (SSE/SST) {Divide numerator and denominator by SST and using formula 2}
= (R^2(n-2)) / (1 -R^2) {Using formula 2}}
= ((n-2)R^2 )/ (1-R^2) Proved
b)
From part a,
F =((n-2)R^2 )/ (1-R^2)
=> F - FR^2 = nR^2 - 2R^2
=> R^2(-F+2-n) =-F
=> R^2 = -F / (-F+2-n)
=> R^2 = F /(F +n -2) Proved
