Verify the identity 2cos2x2sin2x cotxsecxcscxtanxSolution2c
Verify the identity: (2cos2x-2)/(sin2x) = cot(x)-sec(x)csc(x)-tan(x)
Solution
(2cos2x-2)/(sin2x) = cot(x)-sec(x)csc(x)-tan(x)
Lets take more complex side i.e. RHS:
cot(x)-sec(x)csc(x)-tan(x) = cosx/sinx - 1/cosxsinx - sinx/cosx
= ( cos^2x - 1 - sin^2x)/sinxcosx
= ( cos2x -1)/sinxcosx
multiplying numerator and denominator with 2
= 2 ( cos2x -1)/2sinxcosx
= ( 2cos2x - 2)/sin2x
= LHS

