The goldmedalwinning heights meters for the mens high jump f
The gold-medal-winning heights (meters) for the men\'s high jump for 1948 to 1992 are shown here:
| Year | Height | Year | Height |
| 1948 | 1.98 | 1972 | 2.23 |
| 1952 | 2.04 | 1976 | 2.25 |
| 1956 | 2.12 | 1980 | 2.36 |
| 1960 | 2.16 | 1984 | 2.35 |
| 1964 | 2.18 | 1988 | 2.38 |
| 1968 | 2.24 | 1992 | 2.34 |
Solution
XY19481.9819522.0419562.1219602.1619642.1819682.2419722.2319762.2519802.3619842.3519882.3819922.34
The equation of the regression line is:
y = ?14.708 + 0.009?x
The graph of the regression line is:
y = -14.708 + 0.009 x
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
Explanation
We will find an equation of the regression line in 4 steps.
Step 1: Find X?Y and X2 as it was done in the table below.
Step 2: Find the sum of every column:
?X=23640 , ?Y=26.63 , ?X?Y=52480.76 , ?X2=46573088
Step 3: Use the following equations to find a and b:
ab=?Y??X2??X??XYn??X2?(?X)2=26.63?46573088?23640?52480.7612?46573088?236402??14.708=n??XY??X??Yn??X2?(?X)2=12?52480.76?23640?26.6312?46573088?(23640)2?0.009
Step 4: Substitute a and b in regression equation formula
y = a + b?x= ?14.708 + 0.009?x
Thus constant rate of change is slope = 0.009
For 1996 we substitute x=1996
y = -14.708+0.009(1996) = 3.256
Least squares method of finding linear regression gives the most reliable result provided the scatter plot shows a linear relationshiup
T
| X | Y | X?Y | X?X |
| 1948 | 1.98 | 3857.04 | 3794704 |
| 1952 | 2.04 | 3982.08 | 3810304 |
| 1956 | 2.12 | 4146.72 | 3825936 |
| 1960 | 2.16 | 4233.6 | 3841600 |
| 1964 | 2.18 | 4281.52 | 3857296 |
| 1968 | 2.24 | 4408.32 | 3873024 |
| 1972 | 2.23 | 4397.56 | 3888784 |
| 1976 | 2.25 | 4446 | 3904576 |
| 1980 | 2.36 | 4672.8 | 3920400 |
| 1984 | 2.35 | 4662.4 | 3936256 |
| 1988 | 2.38 | 4731.44 | 3952144 |
| 1992 | 2.34 | 4661.28 | 3968064 |

