X is a normally distributed random variable with mean 15 and
X is a normally distributed random variable with mean, =15 and variance, 2= 25. Using z-table, calculate the following probabilities.
a. P(x0).
b. P(x5).
c. P(x10)
d. P(x15)
e. P(x20)
f. P(x0)
g. P(x5)
h. P(x10)
i. P(x15)
j. P(x20)
Note: forget about the first one that i posted it didn\'t copy exactly the question. This one is the appropriate one. Thank you
Solution
a)
 Normal Distribution
 Mean ( u ) =15
 Standard Deviation ( sd )=5
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 P(X <= 0) = (0-15)/5
 = -15/5= -3
 = P ( Z <-3) From Standard Normal Table
 = 0.0013                  
 b)
 P(X <= 5) = (5-15)/5
 = -10/5= -2
 = P ( Z <-2) From Standard Normal Table
 = 0.0228                  
 c)
 P(X <= 10) = (10-15)/5
 = -5/5= -1
 = P ( Z <-1) From Standard Normal Table
 = 0.1587                  
 d)
 P(X <= 15) = (15-15)/5
 = 0/5= 0
 = P ( Z <0) From Standard Normal Table
 = 0.5                  

