These 31 girls are an SRS of all seventhgrade girls in the s
| These 31 girls are an SRS of all seventh-grade girls in the school district. Suppose that the standard deviation of IQ scores in this population is known to be = 15. We expect the distribution of IQ scores to be close to Normal. Below is the distribution\'s stemplot. 
 True or False: There are no major departures from Normality. | ||||||||||||||
| 7. | Estimate the mean IQ score for all seventh-grade girls in the school district, using a 90% confidence interval. | ||||||||
| 
 | 
| These 31 girls are an SRS of all seventh-grade girls in the  school district. Suppose that the standard deviation of IQ scores in this population is known to be = 15. We expect the distribution of IQ scores to be close to Normal. Below is the distribution\'s stemplot. 
 True or False: There are no major departures from Normality. | ||||||||||||||
Solution
A)
TRUE: There are no major departures from Normality.
*************************
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    105.8387097          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    14.27140912          
 n = sample size =    31          
               
 Thus,              
               
 Lower bound =    101.6225867          
 Upper bound =    110.0548326          
               
 Thus, the confidence interval is              
               
 (   101.6225867   ,   110.0548326   )   
 [ANSWER, the closest is OPTION B: 101.41 to 110.27.
I think your instructor used tables, and that will introduce some round off errors.]

