The bent wire shown in the figure lies in a uniform magnetic
Solution
For left section :
Length L = 2.92 cos 75 i + 2.92 sin 75 j
= 0.7557 i +2.82 j
Current i = 2.56 A
Magnetic field B = 4.7 k
magnetic forlce on this segment F = i ( L X B )
= 2.56 [ (0.7557 i +2.82 j ) X 4.7 k ]
= 2.56 [ (0.7557 x4.7 )(i X k ) +(2.82 x4.7)(jXk)]
= 2.56 [ 3.551 (-j) +13.25 i ]
= - 9.092 j +33.92 i
Similarly ,
For right section :
Length L = 2.92 cos 75 i + 2.92 sin 75 (-j)
= 0.7557 i - 2.82 j
Current i = 2.56 A
Magnetic field B = 4.7 k
magnetic forlce on this segment F \' = i ( L X B )
= 2.56 [ (0.7557 i -2.82 j ) X 4.7 k ]
= 2.56 [ (0.7557 x4.7 )(i X k ) +(-2.82 x4.7)(jXk)]
= 2.56 [ 3.551 (-j) -13.25 i ]
= - 9.092 j -33.92 i
Therefore net force F \" = F + F \'
= (- 9.092 j +33.92 i)+(- 9.092 j -33.92 i)
= -9.092 j -9.092 j
= -18.184 j
