Suppose that for a particular airline 25 of all flight are l
     Suppose  that, for a particular airline, 25% of all flight are late. The airline randomly selects 50 of their flights. Let X = the number of late flights among those selected  Find the E[X]  Find the standard deviation of X  
  
  Solution
a)
E(x) = np = 50*0.25 = 12.5 [ANSWER]
******************
B)
s(x) = sqrt(np(1-p)) = sqrt(50*0.25*(1-0.25)) = 3.061862178 [ANSWER]
*******************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    9.5      
 u = mean =    12.5      
           
 s = standard deviation =    3.061862178      
           
 Thus,          
           
 z = (x - u) / s =    -0.979795897      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -0.979795897   ) =    0.836406561 [ANSWER]

