a simple random sample from a population with a normal distr
a simple random sample from a population with a normal distribution of 100 body temperatures has x=98.50 and s=0.58. construct an 80% confidence interval estimate of the standard devation. is it safe to conclude that the population standard deviation is less that 1.80?
Solution
As              
               
 df = n - 1 =    99          
 alpha = (1 - confidence level)/2 =    0.1          
               
 Then the critical values for chi^2 are              
               
 chi^2(alpha/2) =    117.4068832          
 chi^2(alpha/2) =    81.44925275          
               
 Thus, as              
               
 lower bound = (n - 1) s^2 / chi^2(alpha/2) =    0.283659689          
 upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    0.408887729          
               
 Thus, the confidence interval for the variance is              
               
 (   0.283659689   ,   0.408887729   )
               
 Also, for the standard deviation, getting the square root of the bounds,              
               
 (   0.532597117   ,   0.639443296   ) [ANSWER]
As 1.8 is not inside the interval above, then yes, it is safe to say that the population standard deviation is less than 1.8. [ANSWER]

