Given the real number a calculate tan2a if sina cosa 1Solu
Given the real number a calculate tan2a if sina + cosa = 1
Solution
We\'ll square raise the given relation sina + cosa = 1.
(sina + cosa)^2 = 1^2
(sina)^2 + (cosa)^2 + 2sina*cosa = 1 (1)
But, from the fundamental formula of trigonometry:
(sina)^2 + (cosa)^2 = 1
We\'ll substitute (sina)^2 + (cosa)^2 by 1:
The relation (1) will become:
1 + 2sina*cosa = 1
We\'ll eliminate like terms:
2sina*cosa = 0
But 2sina*cosa = sin (2a)
We\'ll write the formula for tan 2a:
tan 2a = sin 2a/cos 2a
tan 2a = 0/cos 2a
tan 2a = 0

