5 Use probability tree Given A GM stock B Dow Jones Index
5. Use probability tree: Given A = GM stock ?, B = Dow Jones Index ?, the p(A) = .8 and both the index and GM stock can only go up or down. Also, p(B / A) = .7 and the p(B / AC) = .25.
Find each of the following:
a) p(AC) =
b) p(BC / A) =
c) p(BC / AC) =
d) p(AB) =
e) p(ACB) =
f) p(B) =
g) p(BC) =
h) p(A u B) =
i) p(AC u BC) =
j) p(A / B) =
k) p(AC / BC) =
l) Are A and B independent?
Solution
a) p(AC) = 1-P(A)= 1-0.8 =0.2
---------------------------------------------------------------------------------------------------------
b) p(B / A) = .7
--> P(A and B)/P(A) = 0.7
So P(A and B)= 0.7*0.8= 0.56
p(BC / A) = P(B\' and A)/P(A)
={P(A)-P(A and B)}/ P(A)
=(0.8-0.56)/0.8
=0.3
---------------------------------------------------------------------------------------------------------
c) p(B / AC) = .25
--> P(B and A\')/P(A\')= 0.25
So P(B and A\')= 0.25*0.2= 0.05
--> P(B) - P(A and B) =0.05
So P(B) = 0.05+0.56=0.61
p(BC / AC) = P(B\' and A\')/P(A\')
=(1-P(A or B))/P(A\')
=(1-P(A)-P(B)+P(A and B)) / P(A\')
=(1-0.8-0.61+0.56)/0.2
=0.75
---------------------------------------------------------------------------------------------------------
d) p(AB) = 0.56
---------------------------------------------------------------------------------------------------------
e) p(ACB) =P(B)- P(A and B) = 0.61-0.56 =0.05
---------------------------------------------------------------------------------------------------------
f) p(B) =0.61
---------------------------------------------------------------------------------------------------------
g) p(BC) = 1-P(B)=1-0.61= 0.39
---------------------------------------------------------------------------------------------------------
h) p(A u B) = P(A)+ P(B)-P(A and B)
=0.8+0.61-0.56
=0.85
---------------------------------------------------------------------------------------------------------
i) p(AC u BC) = 1-P(A and B) =1-0.56 =0.44
---------------------------------------------------------------------------------------------------------
j) p(A / B) = P(A and B)/P(B)
=0.56/0.61
=0.9180328
---------------------------------------------------------------------------------------------------------
k) p(AC / BC) = P(A\' and B\')/P(B\')
=(1-P(A)-P(B)+P(A and B))/ P(B\')
=(1-0.8-0.61+0.56)/0.39
=0.3846154
---------------------------------------------------------------------------------------------------------
l) Are A and B independent?
No, because P(A)*P(B)=0.8*0.61 is not equal to P(A and B)=0.56

