3x5logx4 fx find least integerSolutionAnswer 3x5 logx4 Now
3x^5+(logx)^4 = f(x) find least integer
Solution
Answer:
3x^5 + (logx)^4
Now , 3x^5 + (logx)^4 < = x^n
=> 3x^5 + (logx)^4 = x^n
taking log on both sides , we get
log [ 3x^5 + (logx)^4 ] = logx^n
=> log [ 3x^5 + 4logx ] = logx^n
log ( 3x^5 * logx) = logx^n
3x^5 * logx = logx^n
3x^5 * x = x^n
3 log(x^5 *x) = nlogx
3log(x^5*x) = nlogx
3log(x^6) = nlogx
18logx= nlogx => n = 18
Therefore n = 18.
