A gambler tosses a fair die 20 times and computes the sum X
Solution
Consider:
Thus,  
   
 E(x) = Expected value = mean =    3.5
 Var(x) = E(x^2) - E(x)^2 =    2.916666667
 s(x) = sqrt [Var(x)] =    1.707825128
 We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound = 70/20 =   3.5      
 x2 = upper bound = 100/20 =   5      
 u = mean =    3.5      
 n = sample size =    20      
 s = standard deviation =    1.707825128      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    0      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    3.927922023      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.5      
 P(z < z2) =    0.999957159      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.499957159 [ANSWER]
| x | P(x) | x P(x) | x^2 P(x) | 
| 1 | 0.166667 | 0.166667 | 0.166667 | 
| 2 | 0.166667 | 0.333333 | 0.666667 | 
| 3 | 0.166667 | 0.5 | 1.5 | 
| 4 | 0.166667 | 0.666667 | 2.666667 | 
| 5 | 0.166667 | 0.833333 | 4.166667 | 
| 6 | 0.166667 | 1 | 6 | 

