The discrete random variable X has the probability distribut
The discrete random variable X has the probability distribution shown here:
X -2 -1 0 1 2
P(X=x) 0.15 0.10 0.35 0.30 ?
(a) Find P(-1 < X < 1)
The discrete random variable X has the probability distribution shown here: X -2 -1 0 1 2 P(X=x) 0.15 0.10 0.35 0.30 ? (a) Find P(-1Solution
(a) P(-1<X<1)=P(X=0)=0.35
--------------------------------------------------------------------------------------------------------------------------
(b) E(x)=sum of x*f(x)
=(-2)*0.15+(-1)*0.1+0*0.35+1*0.3+2*0.1
=0.1
E(x^2)=sum of x^2*f(x)
=(-2)^2*0.15+(-1)^2*0.1+0*0.35+1*0.3+2^2*0.1
=1.4
So Var(X)=E(X^2)-[E(X)]^2
=1.4-0.1^2
=1.39
--------------------------------------------------------------------------------------------------------------------------
(c) standard deviation =sqrt(1.39)=1.178983
So the probability is
P(mu-o <X<mu+o) = P(0.1-1.178983 <X<0.1+1.178983)
=P(-1.078983<X<1.278983)
=P(X=-1)+P(X=0)+P(X=1)
=0.1+0.35+0.3
=0.75
