A sample of 100 apparently normal adult males 25 years old h
A sample of 100 apparently normal adult males, 25 years old, had a mean systolic blood pressure of 125. If it is believed that the population standard deviation is 15, find:
1a. The 90 percent confidence interval for .
1b. The 95 percent confidence interval for .
Solution
If you mean confidence interval for the mean:
1a.
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    125          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    15          
 n = sample size =    100          
               
 Thus,              
               
 Lower bound =    122.5327196          
 Upper bound =    127.4672804          
               
 Thus, the confidence interval is              
               
 (   122.5327196   ,   127.4672804   ) [ANSWER]
****************************
1b.
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    125          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    15          
 n = sample size =    100          
               
 Thus,              
               
 Lower bound =    122.060054          
 Upper bound =    127.939946          
               
 Thus, the confidence interval is              
               
 (   122.060054   ,   127.939946   ) [ANSWER]

